Implementation Aspects of Band Lanczos Algorithms for Computation of Eigenvalues of Large Sparse Symmetric Matrices

نویسنده

  • Axel Ruhe
چکیده

A band Lanczos algorithm for the iterative computation of eigenvalues and eigenvectors of a large sparse symmetric matrix is described and tested on numerical examples. It starts with a p dimensional subspace, and computes an orthonormal basis for the Krylov spaces of A, generated from this starting subspace, in which A is represented by a 2p + 1 band matrix, whose eigenvalues can be computed. Special emphasis is given to devising an implementation that gives a satisfactory numerical orthogonality, with a simple program and few arithmetic operations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A parallel Block Lanczos algorithm and its implementation for the evaluation of some eigenvalues of large sparse symmetric matrices on multicomputers

In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software for the evaluation of some eigenvalues of a large sparse symmetric matrix. It implements a Block Lanczos algorithm efficient and portable for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense matrices, some of which have been derived by ScaL...

متن کامل

On Large-Scale Diagonalization Techniques for the Anderson Model of Localization

We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely the computation of a few interior eigenvalues and their associated eigenvectors for the largest sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-inv...

متن کامل

A Gpu Implementation of the Filtered Lanczos

This paper describes a graphics processing unit (GPU) implementation of the Filtered Lanczos Procedure for the solution of large, sparse, symmetric eigenvalue problems. The Filtered Lanczos Procedure uses a carefully chosen polynomial spectral transformation to accelerate the convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particula...

متن کامل

A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems

When combined with Krylov projection methods, polynomial filtering can provide a powerful method for extracting extreme or interior eigenvalues of large sparse matrices. This general approach can be quite efficient in the situation when a large number of eigenvalues is sought. However, its competitiveness depends critically on a good implementation. This paper presents a technique based on such...

متن کامل

Some new restart vectors for explicitly restarted Arnoldi method

The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010